
8. Advanced Scripting

2020-1-UK01-KA201-079177

3D Worlds

INTRODUCTION

✔ Objects can wait for messages in specific channels.

✔ You can use any channel you want from -2147483648 to 2147483647.

Channel 0 is an open channel and is used whenever an avatar writes

something in the ‘nearby’ chat.

✔ You can send messages to other channels by writing / and the number of the

channel. For example “/3000 hello” will send the message “hello” to channel

3000. Avatars nearby will not see this message in chat.

✔ Using messages you can communicate information between different objects.

You can also communicate information between parts of the same ‘linked’

object but you do not use channels for that.

MESSAGES

✔ To allow an object to wait for messages on a specific channel, you have

to use the llListen function first, indicating the channel you want it to

listen to and specific filters for the messages that can receive or the the

allowed senders (e.g. specific avatar or object). This command is

usually called in the state_entry event of the object..

integer llListen(integer channel, string name, key id, string msg);

http://wiki.secondlife.com/wiki/Integer
http://wiki.secondlife.com/wiki/Integer
http://wiki.secondlife.com/wiki/String
http://wiki.secondlife.com/wiki/Key
http://wiki.secondlife.com/wiki/String

MESSAGES

✔ To handle the incoming messages, you need to use the “listen” event.

✔ When a message is sent to the specified channel, the commands inside

the “listen” event will run. There you can adapt the behavior you want

based on the message that was received.

listen(integer channel, string name, key id, string message){ ; }

http://wiki.secondlife.com/wiki/Integer
http://wiki.secondlife.com/wiki/String
http://wiki.secondlife.com/wiki/Key
http://wiki.secondlife.com/wiki/String

MESSAGES

✔ To send a message from another object, you can use the llSay

command, indicating the channel number and the message

llSay(integer channel, string msg);

http://wiki.secondlife.com/wiki/Integer
http://wiki.secondlife.com/wiki/String

MULTIPLE PARAMETERS

✔ Sometimes you may want to send multiple parameters through a message.

✔ A solution would be to create a string message that contains all the data you

want to send separated by a specific character (e.g a colon ‘:’ character).

✔ When you receive the message in the listen event you can split the message

based on that character using the ‘llParseString2List’ command.

list llParseString2List(string src, list separators, list spacers);

http://wiki.secondlife.com/wiki/List
http://wiki.secondlife.com/wiki/String
http://wiki.secondlife.com/wiki/List
http://wiki.secondlife.com/wiki/List

DIALOGUE MENU

✔ Another way to send a message to a channel is using a dialogue menu

for user.

✔ The command llDialog will generate a selection menu for a specific

user, with a message and some options/buttons. When the user selects

one of the buttons, the message is sent to a specific channel.

llDialog(key avatar, string message, list buttons, integer channel);

http://wiki.secondlife.com/wiki/Key
http://wiki.secondlife.com/wiki/String
http://wiki.secondlife.com/wiki/List
http://wiki.secondlife.com/wiki/Integer

LINKED SETS

✔ Communication between parts of a set uses a similar approach,

however you don’t have to use channel numbers. You can specify the

parts you want the message to be sent.

✔ To handle messages from other parts, you need to add a

“link_message” event inside a script of the part that will handle the

message.

link_message(integer sender_num, integer num, string str, key id){;}

http://wiki.secondlife.com/wiki/Integer
http://wiki.secondlife.com/wiki/Integer
http://wiki.secondlife.com/wiki/String
http://wiki.secondlife.com/wiki/Key

LINKED SETS

✔ To send a message to another part of the linked set you can use the

‘llMessageLinked’ command.

✔ The first argument specifies the linked set ID of the particular part you want to

send the message or one of the following values (LINK_ROOT, LINK_SET,

LINK_ALL_OTHERS, LINK_ALL_CHILDREN, LINK_THIS).

✔ Similar to ‘llSay’ you send a string message, but you can also send an integer

and a key variable which is useful when you want to send multiple information.

llMessageLinked(integer link, integer num, string str, key id);

http://wiki.secondlife.com/wiki/Integer
http://wiki.secondlife.com/wiki/Integer
http://wiki.secondlife.com/wiki/String
http://wiki.secondlife.com/wiki/Key

LINKED SETS

✔ In many cases you have some script in the ROOT part of a linked set

and want to manipulate some aspects of the other members of the

group (e.g their color, texture or transparency).

✔ Although this can be done using the above mentioned approach with

messages, the LSL language offers a set of commands that you can

use from scripts in the ROOT object to manipulate other parts.

LINKED SETS

✔ For example llSetLinkAlpha, llSetLinkColor and llSetLinkTexture can be used

from the ROOT object to change the Transparency, Color and the Texture of

other parts correspondingly.

✔ These commands are similar to the regular ones, but they have an additional

argument to specify the parts that you want to manipulate.

llSetLinkAlpha(integer link, float alpha, integer face);

llSetLinkColor(integer link, vector color, integer face);

llSetLinkTexture(integer link, string texture, integer face);

http://wiki.secondlife.com/wiki/Integer
http://wiki.secondlife.com/wiki/Float
http://wiki.secondlife.com/wiki/Integer
http://wiki.secondlife.com/wiki/Integer
http://wiki.secondlife.com/wiki/Vector
http://wiki.secondlife.com/wiki/Integer
http://wiki.secondlife.com/wiki/Integer
http://wiki.secondlife.com/wiki/String
http://wiki.secondlife.com/wiki/Integer

